– How to compute $V(\mathbb{B}/\mathbb{K})$. Suppose $\alpha:A\to B$ is surjective, is there a lift for each projection $p\in B$?

– Is there any topology s.t. $f_n\to f$ is equivalent to $f_n$ converges uniformly to $f$ on any compact set?

Skip to content
# Questions this week

– How to compute $V(\mathbb{B}/\mathbb{K})$. Suppose $\alpha:A\to B$ is surjective, is there a lift for each projection $p\in B$?

– Is there any topology s.t. $f_n\to f$ is equivalent to $f_n$ converges uniformly to $f$ on any compact set?