**Definition**. Suppose $I$ is an index set, $V$ and $ W$ are linear vector spaces, a multilinear map $f:\oplus_{i\in I} V\to W$ is called an *alternating operator* if $f((v_i)_{i\in I})=0$ whenever $(v_i)_{i\in I}\in \oplus_{i\in I} V$ is a family of linearly dependent vectors in $V$, here $\oplus_{i\in I} V$ merely means a subspace of $\Pi_{i\in I} V$. The I-*exterior power* of a linear space $V$ with a linear space $\Lambda^I V$ with an alternating operator $\Lambda$ such that for any linear space $W$ and an alternating operator $f$, there exists an alternating operator $\tilde f$ such that the following diagram is commutative:

\begin{xy}

\xymatrix{

\oplus_{i\in I} V\ar[r]^{\Lambda} \ar[rd]_f&\Lambda^I V\[email protected]{–>}[d]^{\tilde f}\\

& W

}

\end{xy}

**Existence**. Let $L$ be the linear subspace of $\otimes^I V$ gernerated by $\{v_1\otimes\cdots \otimes v_n |v_1,\cdots, v_n \mbox{ are linearly dependent. }\}$, then $\otimes^I V/L$ with $q\circ \otimes$ (where $q$ is the quotient map) is the I-*exterior power* of $V$.

*Proof*. For any alternating operator $f:V\to W$, we know that there exists some linear map $\bar f$ s.t. the left triangle commutative in the following diagram. Define $\tilde f$ as the map induced by $\bar f$, i.e., $$\tilde f(q(x))=\bar f(x)\forall x\in \otimes^I V.$$

\begin{xy}

\xymatrix{

\oplus_{i\in I} V\ar[r]^{\otimes} \ar[rd]_f&\otimes^I V\[email protected]{–>}[d]^{\bar f}\ar[r]^q&\Lambda^I V\[email protected]{–>}[dl]^{\tilde f}\\

& W

}

\end{xy}

Since the image of $\tilde f$ is deterministic on each generator, $\tilde f$ is deterministic.