left maximal modular ideal in $M_n$

Each pure state on $M_n=B(\mathbb{C}^n)$ is of form $$w_x:=\langle \cdot ~ x, x\rangle,$$ thus each left maximal modular ideal is of form $$\{u|w_x(u^*u)=0\}=\{u|\|ux\|=0\}.$$
Particularly, corresponding to $e_1=(1,0)$ in $\mathbb{C}^2$, the left maximal modular ideal is is of form
$$\left( \begin{array} & 0 & a\\
0 & b \end{array}\right). $$